Интуиция за корреляцией

Содержание:

Что такое ?

Корреляция в финансовой и инвестиционной отраслях – это статистика, которая измеряет степень движения двух ценных бумаг по отношению друг к другу. Корреляции используются в расширенном управлении портфелем и вычисляются как коэффициент корреляции , значение которого должно находиться в диапазоне от -1,0 до +1,0.

Ключевые моменты

  • Корреляция – это статистика, которая измеряет степень изменения двух переменных по отношению друг к другу.
  • В сфере финансов корреляция может измерять движение акций с движением эталонного индекса, такого как S&P 500.
  • Корреляция измеряет ассоциацию, но не показывает, является ли x причиной y или наоборот, или если ассоциация вызвана третьим, возможно, невидимым фактором.

Графическое представление коэффициента Фехнера

Пример №1. При разработке глинистого раствора с пониженной водоотдачей в высокотемпературных условиях проводили параллельное испытание двух рецептур, одна из которых содержала 2% КМЦ и 1% Na2CO3, а другая 2% КМЦ, 1% Na2CO3 и 0,1% бихромата калия. В результате получена следующие значения Х (водоотдача через 30 с).

X1 9 9 11 9 8 11 10 8 10
X2 10 11 10 12 11 12 12 10 9

Пример №2.
Коэффициент корреляции знаков, или коэффициент Фехнера, основан на оценке степени согласованности направлений отклонений индивидуальных значений факторного и результативного признаков от соответствующих средних. Вычисляется он следующим образом:


,

где na — число совпадений знаков отклонений индивидуальных величин от средней; nb — число несовпадений.

Коэффициент Фехнера может принимать значения от -1 до +1. Kф = 1 свидетельствует о возможном наличии прямой связи, Kф =-1 свидетельствует о возможном наличии обратной связи.

Рассмотрим на примере расчет коэффициента Фехнера по данным, приведенным в таблице:

Xi

Yi

Знаки отклонений значений признака от средней

Совпадение (а) или несовпадение (в) знаков

Для Xi

Для Yi

8

40

А

9

50

+

В

10

48

+

В

10

52

+

В

11

41

+

В

13

30

+

В

15

35

+

В

Для примера: .

Значение коэффициента свидетельствует о том, что можно предполагать наличие обратной связи.

Пример №2
Рассмотрим на примере расчет коэффициента Фехнера по данным, приведенным в таблице:
Средние значения:

Xi

Yi

Знаки отклонений от средней X

Знаки отклонений от средней Y

Совпадение (а) или несовпадение (b) знаков

12

220

+

B

9

1070

+

B

8

1000

+

B

14

606

+

B

15

780

+

+

A

10

790

+

B

10

900

+

B

15

544

+

B

93

5910

Значение коэффициента свидетельствует о том, что можно предполагать наличие обратной связи.

Интервальная оценка для коэффициента корреляции знаков

Пример №3.
Рассмотрим на примере расчет коэффициента корреляции знаков по данным, приведенным в таблице:

Xi Yi Знаки отклонений от средней X Знаки отклонений от средней Y Совпадение (а) или несовпадение (b) знаков
96 220 + B
52 1070 + B
60 1000 + B
89 606 + B
82 780 + + A
77 790 + B
70 900 + B
92 544 + B
618 5910

Значение коэффициента свидетельствует о том, что можно предполагать наличие обратной связи.

Оценка коэффициента корреляции знаков. Значимость коэффициента корреляции знаков.
По таблице Стьюдента находим tтабл:
tтабл (n-m-1;a) = (6;0.05) = 1.943
Поскольку Tнабл > tтабл , то отклоняем гипотезу о равенстве 0 коэффициента корреляции знаков. Другими словами, коэффициент корреляции знаков статистически — значим.

Доверительный интервал для коэффициента корреляции знаков.
Доверительный интервал для коэффициента корреляции знаков.
r(-1;-0.4495)

Пример ложных корреляций

Обнаружить интересные корреляции не так уж и сложно. Однако многие из них окажутся фальшивыми. Для мужчин на Уолл-стрит две популярные ложные корреляции связаны с женщинами и спортом. В 1920-х годах зародилась теория длины юбки, согласно которой длина юбки и направление фондового рынка взаимосвязаны. Если юбка длинная, это означает, что фондовый рынок идет вниз; если они короткие, рынок растет. Примерно в конце января говорят о так называемом индикаторе Суперкубка, который предполагает, что победа команды AFC, вероятно, означает, что фондовый рынок упадет в следующем году, тогда как победа команды NFC предвещает рост рынок. С 1966 года показатель точности составляет 80%. Это забавный разговор, но, вероятно, серьезный финансовый консультант не рекомендовал бы его в качестве инвестиционной стратегии для клиентов.

Вот еще несколько примеров распространенных ложных корреляций:

  • Когда растут продажи мороженого, растет число случаев утопления. Может показаться, что увеличение продаж мороженого приводит к увеличению числа случаев утопления, но на самом деле повышение температуры может заставить больше людей плавать, а также покупать больше мороженого.
  • Количество убийств в США с 2006 по 2011 год снизилось с той же скоростью, что и использование Microsoft Internet Explorer.
  • Руководители, которые чаще говорят “пожалуйста” и “спасибо”, получают больше результатов.
  • Люди, которые носят экипировку команды Oakland Raiders, с большей вероятностью совершат преступления.

Линейные отношения

Имея в виду линейную корреляцию, давайте вернемся к нашему примеру:

Есликорреляция в этом случае является линейной, аМодель линейной регрессии(то есть прямая линия) после того, как она будет подобрана к данным, должна быть в состоянии адекватнообъяснятьлинейный сигнал в этом наборе данных. Вот как будет выглядеть подобранная модель (черная линия) для этого набора данных:


Линейная регрессионная модель, подходящая для 80% точек данных в наборе данных City против Highway MPG

В приведенном выше примере теперь вы можете использовать подобранную модель для прогнозирования значений MPG для шоссе, соответствующих значениям MPG для городов, которые модель не виделано которые находятся в диапазоне набора данных обучения,

Вот график предсказаний подобранной линейной модели для набора данных удержания, который содержит 20% исходных данных, которые модель не видела во время процесса подгонки.


Фактическое против прогнозируемого MPG для автомагистрали на 20%

Для программно склонных следующий код Python дал эти результаты.

Вы можете получить данные, использованные в примере изВот, Если вы используете эти данные в своей работе, обязательно напишите людям наUC Irvine ML хранилище,

Ближайшая действительная корреляционная матрица

В некоторых приложениях (например, при построении моделей данных только на основе частично наблюдаемых данных) нужно найти «ближайшую» корреляционную матрицу к «приблизительной» корреляционной матрице (например, матрица, которая обычно не имеет полуопределенной положительности из-за того, как она имеет вычислено).

В 2002 году Хайэм формализовал понятие близости с помощью нормы Фробениуса и предоставил метод вычисления ближайшей корреляционной матрицы с использованием алгоритма проекции Дикстры , реализация которого доступна в виде онлайн-веб-API.

Это вызвало интерес к предмету с новыми теоретическими (например, вычисление ближайшей корреляционной матрицы с факторной структурой) и численными (например, использование метода Ньютона для вычисления ближайшей корреляционной матрицы) результатами, полученными в последующие годы.

Функция КОРРЕЛ для определения взаимосвязи и корреляции в Excel

КОРРЕЛ – функция, применяемая для подсчета коэффициента корреляции между 2-мя массивами. Разберем на четырех примерах все способности этой функции.

Примеры использования функции КОРРЕЛ в Excel

Первый пример. Есть табличка, в которой расписана информация об усредненных показателях заработной платы работников компании на протяжении одиннадцати лет и курсе $. Необходимо выявить связь между этими 2-умя величинами. Табличка выглядит следующим образом:

24

Алгоритм расчёта выглядит следующим образом:

25

Отображенный показатель близок к 1. Результат:

26

Определение коэффициента корреляции влияния действий на результат

Второй пример. Два претендента обратились за помощью к двум разным агентствам для реализации рекламного продвижения длительностью в пятнадцать суток. Каждые сутки проводился социальный опрос, определяющий степень поддержки каждого претендента. Любой опрошенный мог выбрать одного из двух претендентов или же выступить против всех. Необходимо определить, как сильно повлияло каждое рекламное продвижение на степень поддержки претендентов, какая компания эффективней.

27

Используя нижеприведенные формулы, рассчитаем коэффициент корреляции:

  • =КОРРЕЛ(А3:А17;В3:В17).
  • =КОРРЕЛ(А3:А17;С3:С17).

Результаты:

28

Из полученных результатов становится понятно, что степень поддержки 1-го претендента повышалась с каждыми сутками проведения рекламного продвижения, следовательно, коэффициент корреляции приближается к 1. При запуске рекламы другой претендент обладал большим числом доверия, и на протяжении 5 дней была положительная динамика. Потом степень доверия понизилась и к пятнадцатым суткам опустилась ниже изначальных показателей. Низкие показатели говорят о том, что рекламное продвижение отрицательно повлияло на поддержку. Не стоит забывать, что на показатели могли повлиять и остальные сопутствующие факторы, не рассматриваемые в табличной форме.

Анализ популярности контента по корреляции просмотров и репостов видео

Третий пример. Человек для продвижения собственных роликов на видеохостинге Ютуб применяет соцсети для рекламирования канала. Он замечает, что существует некая взаимосвязь между числом репостов в соцсетях и количеством просмотров на канале. Можно ли про помощи инструментов табличного процессора произвести прогноз будущих показателей? Необходимо выявить резонность применения уравнения линейной регрессии для прогнозирования числа просмотров видеозаписей в зависимости от количества репостов. Табличка со значениями:

29

Теперь необходимо провести определение наличия связи между 2-мя показателями по нижеприведенной формуле:

0,7;ЕСЛИ(КОРРЕЛ(A3:A8;B3:B8)>0,7;”Сильная  прямая зависимость”;”Сильная обратная зависимость”);”Слабая зависимость или ее отсутствие”)’ class=’formula’>

Если полученный коэффициент выше 0,7, то целесообразней применять функцию линейной регрессии. В рассматриваемом примере делаем:

30

Теперь производим построение графика:

31

Применяем это уравнение, чтобы определить число просматриваний при 200, 500 и 1000 репостов: =9,2937*D4-206,12. Получаем следующие результаты:

32

Функция ПРЕДСКАЗ позволяет определить число просмотров в моменте, если было проведено, к примеру, двести пятьдесят репостов. Применяем: 0,7;ПРЕДСКАЗ(D7;B3:B8;A3:A8);”Величины не взаимосвязаны”)’ class=’formula’>. Получаем следующие результаты:

33

Особенности использования функции КОРРЕЛ в Excel

Данная функция имеет нижеприведенные особенности:

  1. Не учитываются ячейки пустого типа.
  2. Не учитываются ячейки, в которых находится информация типа Boolean и Text.
  3. Двойное отрицание «–» применяется для учёта логических величин в виде чисел.
  4. Количество ячеек в исследуемых массивах обязаны совпадать, иначе будет выведено сообщение #Н/Д.

Распространенные заблуждения

Корреляция и причинно-следственная связь

Традиционное изречение, что « корреляция не подразумевает причинной связи », означает, что корреляция не может использоваться сама по себе для вывода причинной связи между переменными. Это изречение не должно означать, что корреляции не могут указывать на потенциальное существование причинно-следственных связей. Однако причины, лежащие в основе корреляции, если таковые имеются, могут быть косвенными и неизвестными, а высокие корреляции также пересекаются с отношениями идентичности ( тавтологиями ), где не существует причинных процессов. Следовательно, корреляция между двумя переменными не является достаточным условием для установления причинно-следственной связи (в любом направлении).

Корреляция между возрастом и ростом у детей довольно прозрачна с точки зрения причинно-следственной связи, но корреляция между настроением и здоровьем людей менее очевидна. Приводит ли улучшение настроения к улучшению здоровья, или хорошее здоровье приводит к хорошему настроению, или и то, и другое? Или в основе обоих лежит какой-то другой фактор? Другими словами, корреляция может рассматриваться как свидетельство возможной причинной связи, но не может указывать на то, какой может быть причинная связь, если таковая имеется.

Простые линейные корреляции

Четыре набора данных с одинаковой корреляцией 0,816

Коэффициент корреляции Пирсона указывает на силу линейной связи между двумя переменными, но его значение, как правило, не полностью характеризует их взаимосвязь. В частности, если условное среднее из дано , обозначается , не является линейным в , коэффициент корреляции будет не в полной мере определить форму .
Y{\ displaystyle Y}Икс{\ displaystyle X}E⁡(Y∣Икс){\ displaystyle \ operatorname {E} (Y \ mid X)}Икс{\ displaystyle X}E⁡(Y∣Икс){\ displaystyle \ operatorname {E} (Y \ mid X)}

Прилегающие изображение показывает разброс участков из квартет энскомбы , набор из четырех различных пар переменных , созданный Фрэнсис Анскомбами . Четыре переменные имеют одинаковое среднее значение (7,5), дисперсию (4,12), корреляцию (0,816) и линию регрессии ( y  = 3 + 0,5 x ). Однако, как видно на графиках, распределение переменных сильно отличается. Первый (вверху слева), кажется, распределен нормально и соответствует тому, что можно было бы ожидать, рассматривая две коррелированные переменные и следуя предположению о нормальности. Второй (вверху справа) не распространяется нормально; хотя можно наблюдать очевидную взаимосвязь между двумя переменными, она не является линейной. В этом случае коэффициент корреляции Пирсона не указывает на то, что существует точная функциональная связь: только степень, в которой эта связь может быть аппроксимирована линейной зависимостью. В третьем случае (внизу слева) линейная зависимость идеальна, за исключением одного выброса, который оказывает достаточное влияние, чтобы снизить коэффициент корреляции с 1 до 0,816. Наконец, четвертый пример (внизу справа) показывает другой пример, когда одного выброса достаточно для получения высокого коэффициента корреляции, даже если связь между двумя переменными не является линейной.
у{\ displaystyle y}

Эти примеры показывают, что коэффициент корреляции как сводная статистика не может заменить визуальный анализ данных. Иногда говорят, что примеры демонстрируют, что корреляция Пирсона предполагает, что данные следуют нормальному распределению , но это верно лишь отчасти. Корреляцию Пирсона можно точно рассчитать для любого распределения, имеющего конечную матрицу ковариаций , которая включает большинство распределений, встречающихся на практике. Однако коэффициент корреляции Пирсона (вместе с выборочным средним и дисперсией) является достаточной статистикой только в том случае, если данные взяты из многомерного нормального распределения. В результате коэффициент корреляции Пирсона полностью характеризует взаимосвязь между переменными тогда и только тогда, когда данные взяты из многомерного нормального распределения.

Чувствительность к распределению данных

Степень зависимости между переменными и не зависит от масштаба, в котором переменные выражены. То есть, если мы анализируем взаимосвязь между и , на большинство показателей корреляции не влияет преобразование в a  +  bX и в c  +  dY , где a , b , c и d являются константами ( b и d положительны). Это верно как для некоторых статистических данных корреляции, так и для их популяционных аналогов. Некоторые статистические данные корреляции, такие как коэффициент ранговой корреляции, также инвариантны к монотонным преобразованиям предельных распределений и / или .
Икс{\ displaystyle X}Y{\ displaystyle Y}Икс{\ displaystyle X}Y{\ displaystyle Y}Икс{\ displaystyle X}Y{\ displaystyle Y}Икс{\ displaystyle X}Y{\ displaystyle Y}

Коэффициенты корреляции Пирсона / Спирмена между и показаны, когда диапазоны двух переменных не ограничены, а диапазон ограничен интервалом (0,1).Икс{\ displaystyle X}Y{\ displaystyle Y}Икс{\ displaystyle X}

Большинство мер корреляций чувствительны к форме , в которой и дискретизированной. Зависимости становятся сильнее, если рассматривать их в более широком диапазоне значений. Таким образом, если мы рассмотрим коэффициент корреляции между ростом отцов и их сыновей по всем взрослым мужчинам и сравним его с таким же коэффициентом корреляции, вычисленным, когда отцы выбраны ростом от 165 до 170 см, корреляция будет слабее в последнем случае. Было разработано несколько методов, которые пытаются исправить ограничение диапазона для одной или обеих переменных, и обычно используются в метаанализе; наиболее распространены уравнения Торндайка II и III.
Икс{\ displaystyle X}Y{\ displaystyle Y}

Различные меры корреляции в использовании , может быть определена для некоторых совместных распределений X и Y . Например, коэффициент корреляции Пирсона определяется в терминах моментов и, следовательно, будет неопределенным, если моменты не определены. Всегда определяются показатели зависимости на основе квантилей . Статистика на основе выборки, предназначенная для оценки показателей зависимости населения, может иметь или не обладать желательными статистическими свойствами, такими как несмещенность или асимптотическая согласованность , в зависимости от пространственной структуры населения, из которого были взяты данные.

Чувствительность к распределению данных может быть использована с пользой. Например, масштабированная корреляция предназначена для использования чувствительности к диапазону, чтобы выделить корреляции между быстрыми компонентами временного ряда. Контролируемое сокращение диапазона значений позволяет отфильтровывать корреляции на длительных временных масштабах и выявлять корреляции только на коротких временных масштабах.

Линейная корреляционная связь

Таких статистических связей может быть очень много самых разных. Для трейдера самым важным видом статистической связи является корреляционная связь.

Корреляционная связь, это когда каждому значению одной переменной соответствует определенное математическое ожидание другой переменной. То есть при изменении значения одной переменной,
математическое ожидание другой переменной меняется закономерным образом.

А если при изменении значения одной переменной, закономерным образом меняется не только матожидание второй переменной, но и другие характеристики плотности распределения второй переменной (например,
дисперсия, асимметрия и т.д.), то такая связь не является корреляционной. Хотя такая связь тоже является статистической.

Корреляционная связь между случайными переменными x и y называется линейной корреляционной связью, если матожидание переменной y линейно зависит от значений переменной x, и,
одновременно, матожидание переменной x тоже линейно зависит от значений переменной y
. То есть такая взаимная линейность корреляционных связей. Далее здесь рассматривается только линейная
корреляционная связь.

Корреляция и диверсификация

Как знания о корреляции активов могут помочь лучше вкладывать деньги? Думаю, вы все хорошо знакомы с золотым правилом инвестора — не клади все яйца в одну корзину. Речь, естественно, идёт о диверсификации инвестиционных активов в портфеле. Корреляция и диверсификация неразрывно связаны, что понятно даже из названия — английское diversify означает «разнообразить», а как коэффициент корреляции как раз показывает схожесть или различие двух явлений.

Другими словами, инвестировать в финансовые инструменты с высокой корреляцией не очень хорошо. Почему? Все просто — похожие активы плохо диверсифицируются. Вот пример портфеля двух активов с корреляцией +1:

Как видите, график портфеля во всех деталях повторяет графики каждого из активов — рост и падение обоих активов синхронны. Диверсификация в теории должна снижать инвестиционные риски за счёт того, что убытки одного актива перекрываются за счёт прибыли другого, но здесь этого не происходит совершенно. Все показатели просто усредняются:

Портфель даёт небольшой выигрыш в снижении рисков — но только по сравнению с более доходным Активом 1. А так, никаких преимуществ по сути нет, нам лучше просто вложить все деньги в Актив 1 и не париться.

А вот пример портфеля двух активов с корреляцией близкой к 0:

Где-то графики следуют друг за другом, где-то в противоположных направлениях, какой-либо однозначной связи не наблюдается. И вот здесь диверсификация уже работает:

Мы видим заметное снижение СКО, а значит портфель будет менее волатильным и более стабильно расти. Также видим небольшое снижение максимальной просадки, особенно если сравнивать с Активом 1. Инвестиционные инструменты без корреляции достаточно часто встречаются и из них имеет смысл составлять портфель.

Впрочем, это не предел. Наиболее эффективный инвестиционный портфель можно получить, используя активы с корреляцией -1:

Уже знакомое вам «зеркало» позволяет довести показатели риска портфеля до минимальных:

Несмотря на то, что каждый из активов обладает определенным риском, портфель получился фактически безрисковым. Какая-то магия, не правда ли? Очень жаль, но на практике такого не бывает, иначе инвестирование было бы слишком лёгким занятием.

Часто задаваемые вопросы

Что подразумевается под коэффициентом корреляции?

По сути, коэффициент корреляции означает степень, в которой две переменные движутся в тандеме друг с другом. Положительный коэффициент, вплоть до максимального уровня 1, указывает, что движения двух переменных идеально выровнены и в одном направлении – если одна увеличивается, другая увеличивается на ту же величину. Отрицательный коэффициент, вплоть до минимального уровня -1, является прямо противоположным, указывая на то, что две величины движутся в противоположном направлении друг относительно друга. Естественно, почти все реальные явления находятся где-то посередине между этими двумя крайностями.

Как рассчитать коэффициент корреляции?

Коэффициент корреляции рассчитывается путем определения ковариации переменных, а затем деления этой величины на произведение стандартных отклонений этих переменных. Этот расчет можно резюмировать в следующем уравнении:

ρИксузнак равноCov(Икс,у)σИксσужчере:ρИксузнак равноРеRсекOпргуплотнительногод¯uгрт-моментгруплотнительногоггелтяопсоеееясяент   Cov(x,y)=covariance of variables x and yσx=standard deviation of xσy=standard deviation of y\begin{aligned} &\rho_{xy} = \frac { \text{Cov} ( x, y ) }{ \sigma_x \sigma_y } \\ &\textbf{where:} \\ &\rho_{xy} = \text{Pearson product-moment correlation coefficient} \\ &\text{Cov} ( x, y ) = \text{covariance of variables } x \text{ and } y \\ &\sigma_x = \text{standard deviation of } x \\ &\sigma_y = \text{standard deviation of } y \\ \end{aligned}​ρxy​=σx​σy​

How is the correlation coefficient used in investing?

Correlation coefficients are a widely-used statistical measure in investing. They play a very important role in areas such as portfolio composition, quantitative trading, and performance evaluation. For example, some portfolio managers will monitor the correlation coefficients of individual assets in their portfolio, in order to ensure that the total volatility of their portfolios is maintained within acceptable limits. Similarly, analysts will sometimes use correlation coefficients to predict how a particular asset will be impacted by a change to an external factor, such as the price of a commodity or an interest rate.

9.1.3. Простая линейная регрессия

Применение линейного регрессионного анализа имеет специфические черты по сравнению с другими методами обработки данных. Его непосредственное употребление ограничено, в основном, задачами о предсказании значений зависимой переменной по известным значениям аргумента (или аргументов), что в психологии задача не слишком востребованная. Однако, во-первых, линейная регрессия входит как часть во многие другие методы (например, анализ медиации и модерации, о которых речь пойдет в следующей главе), и, во-вторых, служит простым примером отыскания наилучших параметров для модели определенного типа, и психологу полезно понимать суть этого метода. Качество каждого набора параметров, а затем и модели в целом, оценивается процентом дисперсии, который остался вне предсказаний, сделанных моделью по данным значениям аргументов. Замечательным результатом для читателя будет здесь улавливание аналогий с двухфакторным дисперсионным анализом.

Как рассчитать коэффициент корреляции в Excel

В сегодняшней статье речь пойдет о том, как переменные могут быть связаны друг с другом. С помощью корреляции мы сможем определить, существует ли связь между первой и второй переменной. Надеюсь, это занятие покажется вам не менее увлекательным, чем предыдущие!

Корреляция измеряет мощность и направление связи между x и y. На рисунке представлены различные типы корреляции в виде графиков рассеяния упорядоченных пар (x, y). По традиции переменная х размещается на горизонтальной оси, а y — на вертикальной.

График А являет собой пример положительной линейной корреляции: при увеличении х также увеличивается у, причем линейно. График В показывает нам пример отрицательной линейной корреляции, на котором при увеличении х у линейно уменьшается. На графике С мы видим отсутствие корреляции между х и у. Эти переменные никоим образом не влияют друг на друга.

Наконец, график D — это пример нелинейных отношений между переменными. По мере увеличения х у сначала уменьшается, потом меняет направление и увеличивается.

Оставшаяся часть статьи посвящена линейным взаимосвязям между зависимой и независимой переменными.

Коэффициент корреляции

Коэффициент корреляции, r, предоставляет нам как силу, так и направление связи между независимой и зависимой переменными. Значения r находятся в диапазоне между — 1.0 и + 1.0. Когда r имеет положительное значение, связь между х и у является положительной (график A на рисунке), а когда значение r отрицательно, связь также отрицательна (график В). Коэффициент корреляции, близкий к нулевому значению, свидетельствует о том, что между х и у связи не существует график С).

Сила связи между х и у определяется близостью коэффициента корреляции к — 1.0 или +- 1.0. Изучите следующий рисунок.

График A показывает идеальную положительную корреляцию между х и у при r = + 1.0. График В — идеальная отрицательная корреляция между х и у при r = — 1.0. Графики С и D — примеры более слабых связей между зависимой и независимой переменными.

Коэффициент корреляции, r, определяет, как силу, так и направление связи между зависимой и независимой переменными. Значения r находятся в диапазоне от — 1.0 (сильная отрицательная связь) до + 1.0 (сильная положительная связь). При r= 0 между переменными х и у нет никакой связи.

Мы можем вычислить фактический коэффициент корреляции с помощью следующего уравнения:

Ну и ну! Я знаю, что выглядит это уравнение как страшное нагромождение непонятных символов, но прежде чем ударяться в панику, давайте применим к нему пример с экзаменационной оценкой. Допустим, я хочу определить, существует ли связь между количеством часов, посвященных студентом изучению статистики, и финальной экзаменационной оценкой. Таблица, представленная ниже, поможет нам разбить это уравнение на несколько несложных вычислений и сделать их более управляемыми.

Как видите, между числом часов, посвященных изучению предмета, и экзаменационной оценкой существует весьма сильная положительная корреляция. Преподаватели будут весьма рады узнать об этом.

Какова выгода устанавливать связь между подобными переменными? Отличный вопрос. Если обнаруживается, что связь существует, мы можем предугадать экзаменационные результаты на основе определенного количества часов, посвященных изучению предмета. Проще говоря, чем сильнее связь, тем точнее будет наше предсказание.

Использование Excel для вычисления коэффициентов корреляции

Я уверен, что, взглянув на эти ужасные вычисления коэффициентов корреляции, вы испытаете истинную радость, узнав, что программа Excel может выполнить за вас всю эту работу с помощью функции КОРРЕЛ со следующими характеристиками:

КОРРЕЛ (массив 1; массив 2),

массив 1 = диапазон данных для первой переменной,

массив 2 = диапазон данных для второй переменной.

Например, на рисунке показана функция КОРРЕЛ, используемая при вычислении коэффициента корреляции для примера с экзаменационной оценкой.

Список литературы

  1. Аблеева, А. М. Формирование фонда оценочных средств в условиях ФГОС / А. М. Аблеева, Г. А. Салимова // Актуальные проблемы преподавания социально-гуманитарных, естественно — научных и технических дисциплин в условиях модернизации высшей школы : материалы международной научно-методической конференции, 4-5 апреля 2014 г. / Башкирский ГАУ, Факультет информационных технологий и управления. — Уфа, 2014. — С. 11-14.
  2. Ганиева, А.М. Статистический анализ занятости и безработицы / А.М. Ганиева, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры «Статистики и информационных систем в экономике» / Башкирский ГАУ. — Уфа, 2011. — С. 315-316.
  3. Исмагилов, Р. Р. Творческая группа — эффективная форма организации научных исследований в высшей школе / Р. Р. Исмагилов, М. Х. Уразлин, Д. Р. Исламгулов // Научно-технический и научно-образовательный комплексы региона : проблемы и перспективы развития : материалы научно-практической конференции / Академия наук РБ, УГАТУ. — Уфа, 1999. — С. 105-106.
  4. Исламгулов, Д.Р. Компетентностный подход в обучении: оценка качества образования / Д.Р. Исламгулов, Т.Н. Лубова, И.Р. Исламгулова // Современный научный вестник. – 2015. – Т. 7. — № 1. – С. 62-69.
  5. Исламгулов, Д. Р. Научно-исследовательская работа студентов — важнейший элемент подготовки специалистов в аграрном вузе / Д. Р. Исламгулов // Проблемы практической подготовки студентов в вузе на современном этапе и пути их решения : сб. материалов науч.-метод. конф., 24 апреля 2007 года / Башкирский ГАУ. — Уфа, 2007. — С. 20-22.
  6. Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта – компетентностный подход / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова// БЪДЕЩИТЕ ИЗСЛЕДОВАНИЯ – 2016: Материали за XII Международна научна практична конференция, 15-22 февруари 2016. – София: Бял ГРАД-БГ ООД, 2016. – Том 4 Педагогически науки. – C. 80-85.
  7. Лубова, Т.Н. Новые образовательные стандарты: особенности реализации / Т.Н. Лубова, Д.Р. Исламгулов // Современный научный вестник. – 2015. – Т. 7. — № 1. – С. 79-84.
  8. Лубова, Т.Н. Организация самостоятельной работы обучающихся / Т.Н. Лубова, Д.Р. Исламгулов // Реализация образовательных программ высшего образования в рамках ФГОС ВО: материалы Всероссийской научно-методической конференции в рамках выездного совещания НМС по природообустройству и водопользованию Федерального УМО в системе ВО. / Башкирский ГАУ. — Уфа, 2016. — С. 214-219.
  9. Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта – компетентностный подход / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова // Современный научный вестник. – 2015. – Т. 7. — № 1. – С. 85-93.
  10. Саубанова, Л.М. Уровень демографической нагрузки / Л.М. Саубанова, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры «Статистики и информационных систем в экономике» / Башкирский ГАУ. — Уфа, 2011. — С. 321-322.
  11. Фахруллина, А.Р. Статистический анализ инфляции в России / А.Р. Фахруллина, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры «Статистики и информационных систем в экономике» / Башкирский ГАУ. — Уфа, 2011. — С. 323-324.
  12. Фархутдинова, А.Т. Рынок труда в Республике Башкортостан в 2012 году / А.Т. Фархутдинова, Т.Н. Лубова // Студенческий научный форум. Материалы V Международной студенческой электронной научной конференции: электронная научная конференция (электронный сборник). Российская академия естествознания. 2013.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector