Формальная и диалектическая логика

1 | Введение

Логика, как эпистемологический инструмент, изобретена независимо в трёх отдельных государствах: Греции (Аристотелем), Китае (до правления Цинь Шихуанди) и Индии. В последних двух перечисленных государствах логика не распространилась настолько, чтобы «прижиться» и получить развитие. В античной же Греции произошло наоборот — логика сформировалась в своих основах столь определённо, что дополнилась только через 2 тысячелетия.

Значительные изменения в греческую логику, помимо Дж. Буля, О. де Моргана и Б. Рассела, внёс Готлоб Фреге — он придумал 2 вида кванторов. А также Курт Гёдель, открыв знаменитые две теоремы о неполноте, описывающие невозможность объединения множества доказуемых утверждений со множеством истинных. Он утверждал, что доказательства математики зависят от начальных предположений, а не фундаментальной истины, из которой происходят ответы. Одна из главных идей его работ состоит в том, что ни один набор аксиом не способен доказать свою непротиворечивость.

На этом этапе некоторые заметят влияние платонизма на австрийского логика, это на самом деле так. Гёдель не раз заявлял о влиянии метафизики Платона на собственную деятельность. Но сам Платон развитию формальной логики лишь способствовал косвенно, в истории он вносит вклад в развитие другого направления — философской логики. Платоном созданы вопросы, на которых основывается вся западная философия вплоть до наших дней. Философия в том виде, котором она известна, возникла только благодаря Платону.

Платон — учитель Аристотеля

В другие периоды в логику также вносили дополнения:

  • античной школой стоицизма введены термины «модальности», «материальной импликации», «оценки смысла и истины», которые являются задатками логики высказываний;

  • также средневековыми схоластами введены несколько понятий;

  • Готфридом Лейбницем изменена нотация.

Но главное, что сами логические операции не изменились. «Органон» Аристотеля, как сборник из 6 книг — первоисточник, где подробно описаны главные логические законы. «Органон» (с древнегреческого ὄργανον), означает — инструмент. Аристотель считал, что логика является инструментом к познанию. Он объединяет методом получения информации такие науки:

  • Физика — наука о природе;

  • Метафизика — наука о природе природы;

  • Биология — раздел физики, наука о жизни;

  • Психология — раздел физики, наука о душе;

  • Кинематика — раздел физики, наука о движении;

  • И др.

Выполнение задания

9)Установите термины, входящие в состав данного сложного суждения и напишите его в символической форме, используя логические знаки конъюнкции, дизъюнкции, импликации и эквиваленции:

Характерной особенностью России является неравномерность освоения её территории. Процесс организации территориального управления всегда отличала неполная вовлеченность и иных природных и территориальных ресурсов в общий ресурсообмен, содержащий серьезные диспропорции.

В состав данного сложного суждения входят следующие термины:

ИМЕНА – Характерная особенность, Россия, неравномерность освоение, территория, процесс организации, природные и территориальные ресурсы, ресурсообмен, управление.

ПРЕДИКАТОРЫ – вовлеченность, иных, общий.

ПРЕДМЕТНЫЕ ФУНКТОРЫ – диспропорции, неравномерность, неполная.

ЛОГИЧЕСКИЕ КОНСТАНТЫ — и, всегда, содержащий, является.

ПРЕДЛОЖЕНИЯ – повествовательные.

Символическая форма суждения:

( a Ù b) ≡(c Ù (d Ú t)) É g

4 | Сентенциальная логика (алгебра высказываний)

Базовые операции сентенциальной логики — логики высказываний, где заглавная буква означает предложение:

Отрицание (Утверждение ¬A истинно тогда и только тогда, когда A ложно): если имеем утверждение «А» и имеем утверждение «не А», то когда утверждение «А» будет истинным, утверждение «не А» будет ложным. Также и когда утверждение «А» будет ложным — утверждение «не А» будет истинным.

Конъюнкция (Утверждение A ∧ B истинно, если и A, и B — истинны. Ложно в противном случае): в английском языке — союз «and/&»; в русском — «и». В утверждении «А и В», между «А» с «В» стоит знак конъюнкции — «∧». Утверждение «А и В» является истинным, если «А» с «В» являются истинными одновременно. Если хоть один элемент ложен, то всё утверждение ложно. «А и В» подразумевает, во-первых истинность «А», во-вторых истинность «В».

Дизъюнкция (Утверждение A ∨ B верно, если A или B (или оба) верны. Если оба не верны — утверждение ложно): в английском языке — союз «or»; в русском — «или». Существует два типа дизъюнкции — включающая и исключающая (в логике используется включающее «или»). Условия таковы, что утверждение «А или В» будет истинным, когда один или оба элемента истинны, но никогда — когда оба элемента ложны. Это противоречит нашему обыденному мышлению, т.к. когда спрашивают: «Чай или кофе?» мы выбираем один элемент, но в логике подразумевается выбор не только одного, а нескольких возможных.

Импликация (Утверждение A ⇒ B ложно, только когда A истинно, а B ложно): в английском языке — «therefore»; в русском языке — «следовательно». Подразумевает истинность одного элемента при истинности другого. Потому что условия истинности соблюдаются всегда, кроме случая, когда «А» истинно, а «B» ложно. Поэтому утверждение: «А» ложно, следовательно «B» ложно — истинно. Покажется, что когда «А» ложно, а «В» истинно — не соблюдаются условия, но это не так. Если вы скажете, что после дождя промокните — это утверждение будет истинным вне зависимости от того, пошёл дождь или нет.

Эквивалентность (Утверждение A ⇔ B истинно, только если оба значения A и B ложны, либо оба истинны): если истинно утверждение «А, следовательно В» и истинно утверждение «В, следовательно А», то истинными являются выражения «А эквивалентно В» и соответственно «В эквивалентно А». Условия истинности соблюдаются в случаях, когда оба элемента истинны или оба ложны.

Отрицание

Конъюнкция

Дизъюнкция

Импликация

Эквивалентность

A

¬A

A

B

A ∧ B

A

B

A ∨ B

A

B

A ⇒ B

A

B

A ⇔ B

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Виды логики

Благодаря сохранившимся историческим документам доподлинно известно, что логика как наука о законах и формах мышления зародилась примерно 2500 лет назад. С тех пор она претерпевала определенные изменения, которые привели к выделению трех основных видов логики:

  1. Традиционной, или формальной логики, которую еще именуют аристотелевской.
  2. Символической, или математической.
  3. Диалектической.

Формальная логика

Самым древним считается раздел философии под названием формальная, формально-фактическая или дискретная логика, отцом которой и был знаменитый Аристотель. Он рассматривал эту науку как возможность восприятия и оперирования формальными фактами и связями между ними без учета содержания. Выясняя, какие проблемы решает формальная логика, отметим, что она проверяет правильность рассуждений в современном мире

Важно абстрагироваться от конкретики и учитывать только общую форму суждения или вопроса

Простым примером можно назвать констатацию факта: «на улице тепло и сухо, поэтому я пойду и прогуляюсь». Такой тип мышления заложен в каждом человеке, ведь впервые видя собеседника, индивид оценивает его внешний вид и подмечает другие особенности, складывая пазл в единую картину. Если же увиденное не соответствует принятым стандартам, то шаблон ломается.

Математическая логика

В начале XIX в. традиционная формальная теоретическая логика пополняется арсеналом математических методов с использованием искусственных языков. Так сформировалась символическая или современная логика, как ее принято называть. Математический подход позволил вывести способность к рассуждению ученых в разных областях науки на новый уровень,

Такая модель упрощает процесс познания благодаря замене слов привычного языка, которые могут нести двусмысленность и неточность, формальными символами. Многие проблемы, которые изучает математическая логика, невозможно сформулировать привычными словесными выражениями с использованием известных методов. Нередко такую науку в более широком плане причисляют к металогике или метаматематике.

Диалектическая логика

Немецкий философ Гегель и последователи марксистской материалистической теории основатели так называемую диалектическую логику, базой для развития которой стала дискретная логика. В ее основе лежит метод руководства не только формой, но и содержанием явлений, объектов и процессов. То есть такая наука о познавательной деятельности может рассматривать не отдельные противоположности, а их связь и схожесть между собой. У этого раздела философии существуют свои законы и принципы:

  • всесторонность рассмотрения;
  • объективность;
  • единство истории и логики;
  • анализ от абстрактного к конкретному и другие.

литература

  • JM Bocheński : Формальная логика . 5-е издание без изменений. Альбер, Фрайбург (Брайсгау) и др. 1996, ISBN 3-495-44115-8 , ( Orbis acadeus 3, 2).
  • Вальтер Брёкер : Формальная, трансцендентальная и умозрительная логика . Клостерманн, Франкфурт-на-Майне, 1962 год.
  • Пол Хойнинген-Хуэн : формальная логика. Философское введение . Reclam, Штутгарт, 1998 г., ISBN 3-15-009692-8 .
  • Эдмунд Гуссерль : Формальная и трансцендентальная логика. Попытайтесь критиковать логический разум . 2-е издание. Переиздание 1-го издания в 1929 г. без изменений. Niemeyer, Tübingen 1981, ISBN 3-484-70129-3 .
  • Ричард Джеффри: Формальная логика. Его объем и пределы . 2-е издание. Макгроу-Хилл, Нью-Йорк, штат Нью-Йорк, 1981, ISBN 0-07-032321-6 .
  • Пол Лоренцен : Формальная логика . 4-е улучшенное издание. de Gruyter, Берлин 1970, ( Göschen Collection 1176 / 1176a).
  • Альберт Менне : Введение в формальную логику. Ориентация на доктрину непротиворечивости, ее историю, структуру и приложения . Общество научной книги, Дармштадт 1985, ISBN 3-534-05203-X .
  • Альберт Менне, Нильс Опенбергер (ред.): Формальная и неформальная логика у Аристотеля . Олмс, Хильдесхайм-Цюрих и др. 1985, ISBN 3-487-07266-1 .
  • Томас Зоглауэр : Введение в формальную логику для философов . 4-е исправленное издание. Vandenhoeck & Ruprecht, Göttingen 2008, ISBN 978-3-525-03293-0 , ( UTB for Science — Uni Pocket Books — Philosophy 1999).

Что такое логика?

Логика определяется как «формальная наука о способах доказательного рассуждения». Обычно понятие доказательного рассуждения показывается на примерах (силлогизмах), подобным следующему:

Все люди смертны. Сократ — человек. Следовательно, сократ смертен.

На подобных рассуждениях иллюстрировал логику и её создатель Аристотель, и его последователи многие столетия (по традиционной хронологии 2000 лет, но нужно помнить, что измерения в истории подчиняются тем же законам, что и физические измерения, и точность дат из древней истории, вычисленная по законам, по которым обрабатываются физические измерения, 500 лет). Льюис Керролл 1заметил, что логика применима и к рассуждениям в возможных и невозможных мирах, подобным следующему:

Все змеи крылатые. Автор статьи — змея. Следовательно, у автора есть крылья.

Это сразу же привело к абсурду (точный логический термин!) — столько веков ошибочно приписывающуюся логике репутацию науки, занимающейся лишь тривиальностями. Формальная наука отличается тем, что она проверяет прежде всего форму и поэтому может рассуждать про глокую куздру из знаменитого предложения академика Щербы «Глокая куздра штеко быдланула бокра и кудрячит бокренка» столь же уверенно, как про сивую кобылу. Поскольку программист, в некотором смысле, творец возможных либо даже невозможных миров, в принципе он ограничен в своей деятельности лишь законами логики. Далее, в определении предмета логики мы избежали слова «изучение». Это связано с тем наблюдением, которое сделал ещё в XVIII веке великий кенигсбергский философ Иммануил Кант. Логика не изучает мышление, она упорядочивает и нормализует его. Она имеет дело не с процессом открытия, а с формой изложения полученного результата с тем, чтобы убедить других в его правильности, а себя в отсутствии самообмана (заметьте аналогию с отладкой программы!) Кант сказал ещё точнее и жестче: «Логика является цензурой мысли». Мы привыкли поклоняться идолу свободы и рассматривать само слово «цензура» как нечто почти нецензурное. Но посмотрите, как выродилась наша литература после получения абсолютной свободы. Противодействие порождает действие, наступление вызывается обороной (Клаузевиц), чтобы иметь опору, надо от чего-то отталкиваться, чтобы добиваться успехов, надо преодолевать трудности, и вот осталась нашей богеме лишь одна возможность измышлять нечто новое: наркотики, «дурь» — Это какой же дури надо было нанюхаться, чтобы придумать такое! Вот классно! «Творческая интеллигенция», из-за полного отсутствия представлений о платоновских идеальных мирах, которые приоткрывает настоящая наука (прежде всего, математика), не видит другого способа стимуляции воображения, кроме ‘дури’ 2! Для достижения большей выразительности поэт накладывает на себя самоограничение, переходя от прозы к стихам. Настоящие стихи (а не то, что в нынешнее время называется «верлибр») проверяются прежде всего по формальному признаку: наличию чёткого ритма, а затем по создаваемому ими впечатлению и заложенному в них смыслу. Доказательное логическое рассуждение относится к обычному в некотором отношении так же, как стихи относятся к прозе. Но стихи часто ценятся за неоднозначность, а доказательство — лишь за однозначность. Чтобы конструкция была доказательством, нужно, чтобы её синтаксическая правильность гарантировала семантическую. Чтобы конструкция была доказательством в конкретной системе (в этом случае её чаще всего называют выводом), нужно, чтобы она удовлетворяла однозначным, четким и алгоритмически разрешимым условиям, наложенным данной системой. Если система, в которой задано понятие вывода, работает с формулами математического формального языка, причём достаточно общепризнанным способом, её называют теорией, а в общем случае просто исчислением.

Логика по Аристотелю

Древние греки вообще любили рассуждать о том, как устроен наш мир и в чём его смысл. У них это, кстати, получалось вполне неплохо. Так, учёный и философ Левкипп и его ученик Демокрит открыли атомы, не имея при этом наших микроскопов. Сделать это им удалось в том числе благодаря логике.

В Античности очень часто пользовались рассуждениями об объекте для его познания. Строился этот принцип на том, что во Вселенной есть законы, которые человек способен понять через мысли и опыт.

Вот и Аристотель был парень не промах. Он вывел четыре основных закона логики и определил, что это наука, которая является вспомогательной для познания мира. Она изучает законы и форму мышления, ведь только структурировавший своё мышление учёный будет способен совершать открытия.

Тренинги

Тренировка и развитие логического мышления могут быть дополнены следующими тренингами, которые вы сможете бесплатно пройти на нашем сайте:

1

Память и внимание являются важными способностями для логического мышления, которые позволят концентрироваться на большом количестве мыслительных объектов, над которыми осуществляются логические операции

2. Творческое мышление вместе с логикой даст вам возможность не только строить правильные выводы, но искать нестандартные решения там, где логика «зашла в тупик».

3. Ораторское искусство и писательское мастерство формируют словестно-логическое мышление, а также позволяют на практике применить полученные знания в данном курсе.

4. Устный счет и скорочтение подходят для развития и тренировки интеллектуальных способностей.

5. Психология человека является полезной в понимании логического мышления, ведь именно психология как наука изучает мыслительные операции, мотивы, стимулы человека.

В отличие от материальной логики

Иммануил Кант использовал выражение «формальная логика» для основанного на правилах рассуждения, которое «абстрагируется от всего содержания интеллектуального знания и разнообразия его объектов», то есть «не имеет ничего общего ни с чем, кроме простой формы мышления. ». Он отличался от проекта, который он назвал « трансцендентальной логикой » и который также имеет дело с содержанием высказываний.

В отличие от более ранних идиом, сегодня эксперты подразумевают под словом «логика» — если не добавляются дополнительные уточнения — обычно нематериальную или нетрансцендентальную логику.

Суждения.

Суждение – мысль, посредством которой выделяется предмет, раскрывается часть его содержания и утверждается его отношение между предметом и выделенной частью его содержания.

Категорические суждения – множественные атрибутивные суждения

Логические типы суждений.

По логическому характеру отношения субъекта S и предиката Р суждения делятся на группы:

Группа 1. Отношение S и Р мыслится как принадлежность свойств предмету.

Группа 2. Отношение S и Р – как принадлежность предмета классу предметов.

Группа 3. Отношение S и Р — как отношение двух предметов по какому-либо признаку.

Качество суждений.

Утвердительная форма – соединение в действительности.

Отрицательное суждение – разъединение.

Количество суждений.

Общие суждения «все S-Р»;

Частное суждение «некоторое S-Р»;

Единичное суждение «это S-Р».

Виды суждений по отношению.

Категорические, без ограничения по условиям;

Условные, истинность состоит в зависимости от условий;

Разделительные, «А есть или В, или С, или Д».

Модальность суждений.

Аподиктические – выражают необходимость утверждения, обусловлены самим предикатом;

Проблематические – выражают вероятность и возможность противоположного утверждения.

Суждения одновременно по количеству и качеству:

Общеутвердительные – стандартная, логическая форма – «все S суть Р»;

Общеотрицательное — «ни одно S не есть Р»;

Частноутвердительное — «некоторые S суть Р»;

Частноотрицательные – «некоторые S не суть Р».

Преобразования формы суждений.

Преобразования формы суждений, операциями обращения, превращения, преобразования, производится посредством противопоставления предикату.

Превращение – это вывод, в котором заключение получается посредством эквивалентного преобразования утвердительного суждения в отрицательное и наоборот. Эквивалентность достигается за счет того, что при изменении качества суждения изменяется его предикат – он заменяется противоречащим понятием.

Обращение – это умозаключение, при котором из данного суждения, не являющегося частноотрицательным, выводится такое, субъектом которого является предикат исходного, а предикатом — субъект исходного, т.е. преобразование Р в S, S в Р, с сохранением логического содержания.

Противопоставление предикату – вывод последовательным применением превращением исходного суждения и далее обращением полученного суждения.

Иногда не иногда!

Думаю, что вы сталкивались с чем-то подобным в своей жизни, причем тут не важен пол: такой ответ можно услышать и от девушки, и от парня, но правильный ли сделан вывод?

Для того чтобы сказать однозначно, так, чтобы результат был общий для всех подобных ситуаций, чтобы не нужно было каждый раз подбирать фактические аргументы, что бывает сложно, мы приведем рассуждения в безэмоциональный формальный вид. Сделать это не так просто, и в процессе преобразования у нас получится довольно сильно отличающиеся по форме предложения:

Надеюсь, вы уже натренировали свой глаз и легко поняли, какого типа эти суждения: они оба частные, но первое утвердительное, а второе отрицательное. Тут есть некоторая тонкость при анализе: можно исходное суждение видоизменить так, что получится частноутвердительное суждение:

Для работы по логическому квадрату нам важно, чтобы у двух сравниваемых суждений были бы одинаковые части. Так, в первом суждении у нас в отношении находятся «твои поступки» и «умны», потому во втором должны быть они же, а не «твои поступки» и «не умны»

Может меняться связка с «являются» на «не являются» — это показывает смену типа суждения, но не меняет содержания, сути. Именно поэтому нам нужно получить суждение: «Некоторые мои поступки не являются умными».

Что же мы можем сказать про эти суждения?

Если мы вспомним логический квадрат, то выясним, что частные суждения находятся в отношении субконтрарности, то есть могут быть одновременно истинными, но не могут быть одновременно ложными. При этом нужно помнить, что может так быть, что только одно из этих двух суждений истинное. Это приводит к тому, что если мы имеем одно истинное частное суждение — утвердительное, как в нашем примере, — то мы не можем однозначно сказать, является ли субконтрарное — частноотрицательное суждение — истинным или ложным.

Можем ли мы из этого сделать вывод, что некоторые автомобили не загрязняют?

Или вот:

Вот пример риторического приема, когда вы говорите оппоненту:

Это может быть воспринято им (или теми, кто наблюдает за вашим спором) эмоционально: как будто в других местах беседы он был неправ и только тут вы готовы с ним, так уж и быть, согласиться. С точки зрения логики, как мы обсуждали выше, тут нет ни ошибки, ни указания на то, что оппонент был неправ в остальных местах. Что вы ему и объясните, когда он возмутится и выразит несогласие, показав себя не с лучшей стороны.

Так иногда можно использовать ошибки, которые люди допускают в формальной логике из-за эмоций, себе на пользу.

Суждение

Суждение (или высказывание) – это форма мышления, в которой что-либо утверждается или отрицается. Например:

  • Если человек читает, значит, он знает буквы.
  • Любой ребенок нуждается в матери.
  • Все собаки – это не кошки.
  • Многие цветы приятно пахнут.

Давайте рассмотрим основные свойства суждения, чтобы понять, чем оно отличается от понятия.

  1. Любое суждение состоит из связанных между собой понятий. Для примера возьмем два понятия – мужчина и женщина. Из них можно составить несколько суждений:
  • мужчины и женщины – это люди;
  • мужчины не являются женщинами;
  • некоторые женщины сильнее мужчин.
  1. Любое суждение выражается в форме предложения (в то время как понятие выражается словом). При этом не каждое предложение обязательно должно быть суждением.
  2. Любое суждение является либо истинным, либо ложным. Если оно соответствует действительности, оно истинное, а если не соответствует – ложное.
  3. Суждения бывают простыми и сложными. Сложные суждения состоят из простых, соединенных каким-либо союзом.

Из всего вышесказанного вытекает, что суждение представляет собой гораздо более сложную форму логического мышления, чем понятие. Именно поэтому в суждении выделяют четыре части: субъект, предикат, связку и квантор.

Не пугайтесь этих слов, они вовсе не так сложны, как кажется на первый взгляд. Кратко рассмотрим их.

Субъект (S) – это то, о чем идет речь в суждении. В суждении «Все растения не животные» речь идет о растениях, поэтому в данном случае субъектом являются растения.

Предикат (Р) – это то, что говорится о субъекте. В том же суждении «Все растения не животные» о субъекте «растения» говорится, что они – «не животные», поэтому предикатом данного суждения выступает понятие «животные».

Связка – это то, что соединяет субъект и предикат. Роль связки могут выполнять самые разные слова: есть, является, находится, это и т. п.

Квантор – это указатель на объем субъекта. В роли квантора могут быть слова все, некоторые, каждый пятый, половина, ни один и т. п.

Для закрепления давайте проанализируем простое суждение «Многие школьники любят физкультуру».

  1. Субъект – «школьники»
  2. Предикат – «физкультура»
  3. Связка – «любят»
  4. Квантор – «многие»

Надеемся, что это понятно. Стоит также отметить, что в некоторых суждениях квантор может отсутствовать. Однако он обязательно подразумевается. В суждении «Бабочки – это насекомые» квантор видимым образом отсутствует, но он подразумевается – это слово «все».

Вопросы в логике

Теперь давайте разберемся с тем, что такое вопрос, и почему его правильность так важна для логики.

Дело в том, что сам по себе вопрос очень близок к суждению. По сути, вопрос – это логическая форма, направленная на получение ответа в виде суждения.

Любой вопрос состоит из двух частей:

  1. Основной (базисной), выраженной неким суждением (предпосылка вопроса);
  2. Искомой, указывающей на необходимость дополнения этого суждения каким-то ответом.

С точки зрения логики одним из основных требований к постановке вопроса является истинность суждения базисной части. В противном случае вопрос считается логически некорректным.

Например, вопрос: «В каком году Достоевский написал «Войну и мир»?» следует признать логически некорректным, так как его базисная часть выражена ложным суждением «Достоевский написал «Войну и мир»».

Никто или некоторые?

Вот, например, исходное общеотрицательное суждение, которое можно сделать из отрицания знаменитого мифа о том, что люди используют свой мозг только на 10 %.

Оно дает нам на самом деле довольно мало информации. Мы можем вывести из него «некоторые не используют мозг на 10 %». По-русски эту звучит весьма неоднозначно — и это еще одна проблема использования естественного языка в формальной логике, но об этом в другой раз.

Возьмем за изначальное суждение частноотрицательное:

Какой вывод из этого можно сделать? Некоторые делают вывод, что врачи травят людей таблетками и нужно лечиться чем-то «натуральным». На самом деле можно сделать лишь один вывод: общеутвердительное суждение «все таблетки лечат» не является истинным — что никогда не вызывало сомнений, особенно учитывая, что медикаменты довольно часто употребляют без рекомендации врачей.

Для закрепления расшифруем связи в квадрате, которые еще не называли, и перейдем к рассмотрению некоторых типичных ошибок, связанных с умозаключениями по логическому квадрату:

Немного теории

Теория — это самая скучная часть формальной логики, и передо мной стоит трудная задача: уложить в рамки современного «лонгрида» курс, который в институте преподаётся в течение года. Поэтому отсечём всё ненужное современному человеку, имеющему интернет и способному самостоятельно найти недостающие фрагменты.

Главное, что есть в формальной логике — это её четыре основных закона

Три из них сформулировал ещё Аристотель:

— закон тождества,
— закон противоречия,
— закон исключённого третьего.

А четвертый закон – достаточного основания — был добавлен немецким математиком и философом Лейбницем в начале XVIII века.

Закон тождества

«…иметь не одно значение — значит не иметь ни одного значения», писал по этому поводу Аристотель в своей «Метафизике».

То есть каждая мысль и каждый термин в процессе рассуждения должны иметь одно и то же значение. Подмена понятия в ходе рассуждения — это классическая логическая ошибка (или уловка).

Например:

– Гражданин N хороший человек, скромный и любит ездить на велосипеде.– Из него получится хороший аким города!

Здесь мы видим, как в первой части утверждения говорится о личных качествах человека, а вывод делается о его профессиональных качествах — что далеко не тождественно.

Закон противоречия

Два противоречащих друг другу суждения не могут быть одновременно истинными. По крайней мере, одно из них ложно.

… невозможно, чтобы одно и то же в одно и то же время было и не было присуще одному и тому же в одном и том же отношении (Аристотель, «Метафизика»)

Например:

Мы часто встречаем заявления от официальных лиц и даже целых институтов о том, что:

– Народ Казахстана неоднократно демонстрировал свою политическую зрелость, отдавая голоса на выборах президента и депутатов парламента за стабильность!– Вместе с тем, наш народ не готов пока к выборности акимов и прочим демократическим преобразованиям.

Налицо явное противоречие: получается, народ Казахстана с одной стороны политически подкован, а с другой — настолько дремуч, что не готов к такому элементарному процессу, как выборы акима.

Закон исключённого третьего

Два противоречащих друг другу суждения не могут быть одновременно оба истинными или оба ложными.

…ничего не может быть посредине между двумя противоречивыми суждениями об одном, каждый отдельный предикат необходимо либо утверждать, либо отрицать (Аристотель, «Метафизика»)

Противоречащими называют такие два суждения, в одном из которых что-либо утверждается о предмете, а в другом то же самое об этом же предмете отрицается.

Например:

– Цензура запрещена!– Если в интересах общества, то цензура разрешена.

Оба эти утверждения об одном и том же явлении не могут быть одновременно правдивыми или ложными. Если делается исключение, то первое утверждение ложное – «третьего не дано».

Закон достаточного основания

Всякая правильная мысль должна быть обусловлена другими мыслями, истинность которых доказана.

…ни одно явление не может оказаться истинным или действительным, ни одно утверждение справедливым, – без достаточного основания, почему именно дело обстоит так, а не иначе, хотя эти основания в большинстве случаев вовсе не могут быть нам известны (Готфрид Вильгельм Лейбниц, «Монадология»)

Это, в общем — именно то, чем занимается «Фактчек в Казахстане» — поиском достаточных оснований для публикаций. В отличие от первых трёх законов, которые можно применять формальными методами, просто соотнося какие-то утверждения с правилами, для установки достаточности основания необходимо включать критическое мышление и затем прилагать усилия для проверки суждений, в которых вы засомневались.

Например, самые яркие примеры мы встречаем довольно часто в виде панических слухов, распространяемых через мессенджеры и социальные сети.

В случае со скандалом вокруг заболеваемости менингитом: неверными оказались как утверждения об эпидемии, так и «рецепт», в котором утверждалось, что для профилактики менингита всем необходимо пропить курс антибиотиков (что, как пояснили затем врачи, назначается только людям, контактировавшим с больными).

На законе достаточного основания также базируется важный юридический принцип: «презумпция невиновности», гласящий, что никто не виновен, пока его вина не была доказана.

В соцсетях и даже СМИ он нарушается настолько часто, практически ежедневно, что примеры вы легко найдёте сами. Людей называют ворами и убийцами до судов, друг друга лжецами безо всяких доказательств и опровержений и т.д.

В следующей части читайте о логических уловках, построенных на нарушении этих законов логики:

  • Ignoratio elenchi или «подмена тезиса»
  • Argumentum Ad Hominem или «переход на личности»

Внесите свой вклад в борьбу с дезинформацией!

5 | Предикатная логика первого порядка

В XX веке, после добавлений в логику работ Готфрида Лейбница и Готлоба Фреге, на основе этой дисциплины создаётся новая — информатика. Языки программирования основываются на видоизменённой логике Аристотеля — предикатной логике, описательная способность которой выше, чем у логики высказываний (сентенциальной). Прежде чем разобрать этот новый тип логики, поговорим об её отличии от сентенциальной. Главная особенность предикатной логики, что заглавными буквами обозначаются предикаты, а не целые высказывания. Можно сказать, что предикат — это математическая функция, которая «накладывает» множество субъектов на множество утверждений.

Высказывание «Я пошёл в зоопарк» — состоит из субъекта и предиката. В нём субъект — «Я», а предикат — то, что остаётся кроме субъекта («… пошёл в зоопарк»). Субъект — кто совершает действие в предложении или имеет выраженное свойство; предикат — всё оставшееся. Таким образом, если в сентенциальной логике высказывание «Я пошёл в зоопарк» выражалось бы одной заглавной буквой, то в логике предикатов использовались бы две буквы (заглавная и подстрочная): «P» — для предиката; «x» — для субъекта. Субъекты обозначаются переменной («x»), потому что в предикатной логике появляются две относительно новые операции: универсальный и экзистенциальный кванторы. Особенность кванторов заключается в том, что ими возможно записать выражение истинное при всех возможных переменных «х» или хотя бы при одном.

Универсальный квантор (квантор всеобщности) обозначается символом — «∀», с указанием переменной под ним. Возьмём утверждение «Все пингвины чёрно-белые». В логике высказываний оно бы выражалось как «X ⇒ P», где «X» — нечто являющееся пингвином, а «P» — нечто являющееся чёрно-белым. В предикатной логике же используются субъекты и предикаты, поэтому нечто являющееся пингвином (субъект), обозначалось бы переменной «х» снизу под предикатом. «»х» — является пингвином, следовательно, является чёрно-белым». Записывается так: P(х) ⇒ B(х), где P(х): х — пингвин; B(х): x — чёрно-белый.

Однако этого недостаточно, ведь непонятно, один субъект «х» чёрно-белый или больше одного, а может вообще все. Поэтому утверждение «»х» — является пингвином, следовательно, является чёрно-белым», берётся в скобки и перед скобками используется символ «∀» с переменной «х» под ним — которые вместе и будут универсальным квантором.

Универсальный квантор переводится как: «Для всех «х» истинно, что …». Теперь утверждение «х — является пингвином, следовательно, является чёрно-белым» с универсальным квантором перед ним, расшифровывается так: «Для всех «х» истинно, что «х» — является пингвином, следовательно, является чёрно-белым». Это означает, что чем бы ни был объект во вселенной, если этот объект пингвин — он является чёрно-белым. Полная запись будет выглядеть так:

Экзистенциальный квантор (квантор существования) обозначается символом — «∃» с указанием переменной под ним. Возьмём утверждение «Некоторые пингвины серые». Как и в прошлый раз, выражение «»x» — является пингвином и «х» — является серым» возносим в скобки и ставим перед ними квантор, в этом случае экзистенциальный с указанной переменной. «»x» — является пингвином и «х» — является серым» записывается так: P(х) ∧ C(х), где P(х): х — пингвин; C(х): x — серый.

Экзистенциальный квантор можно перевести так: «Есть такой «х», для которого будет истинно, что …». Подразумевается, что есть как минимум один «х», для которого выполняются условия выражения. Если вам говорят, что картофеля не существует, достаточно показать одну картофелину для опровержения этого утверждения. Также и с кванторами, если существует хотя бы один серый пингвин, то утверждение об отсутствии серых пингвинов будет ложно. Полная запись экзистенциального квантора для выражения «Есть такой «х», для которого будет истинно, что «x» — является пингвином и «х» — является серым», будет выглядеть так:

Все или некоторые? Делаем правильные выводы

Обычно мы делаем логические преобразования со сложными для анализа суждениями. Но мы рассмотрим силу логического квадрата на примере содержательно простых суждений.

Предположим, что мы думаем так:

Какие выводы мы можем из этого сделать? Это общеутвердительное (А) суждение, следовательно, мы можем сказать, что:

— это тоже верное суждение, так как оно частноутвердительное (I) и (смотрим на квадрат) находится в отношении подчинения с A. Все отрицательные суждения при этом будут ложными, неправильными, так как они будут контрарными (общеотрицательные E) и контрадикторными (частноотрицательные O) по отношению к изначальному суждению (общеутвердительные A). То есть неправильно будет сказать «некоторые мужики — не козлы».

Несколько интереснее получается, если у нас исходное суждение частноутвердительное:

Можно ли из этого сделать вывод, что все бабы дуры? Нет, из частного нельзя вывести общее, только наоборот: отношение подчинения в квадрате — одностороннее! Вот так-то.

А что с отрицательными суждениями?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector